/* * Copyright 2012 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #import "ZXBitSource.h" #import "ZXByteArray.h" #import "ZXDataMatrixDecodedBitStreamParser.h" #import "ZXDecoderResult.h" #import "ZXErrors.h" /** * See ISO 16022:2006, Annex C Table C.1 * The C40 Basic Character Set (*'s used for placeholders for the shift values) */ static const unichar C40_BASIC_SET_CHARS[40] = { '*', '*', '*', ' ', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' }; static const unichar C40_SHIFT2_SET_CHARS[40] = { '!', '"', '#', '$', '%', '&', '\'', '(', ')', '*', '+', ',', '-', '.', '/', ':', ';', '<', '=', '>', '?', '@', '[', '\\', ']', '^', '_' }; /** * See ISO 16022:2006, Annex C Table C.2 * The Text Basic Character Set (*'s used for placeholders for the shift values) */ static const unichar TEXT_BASIC_SET_CHARS[40] = { '*', '*', '*', ' ', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z' }; // Shift 2 for Text is the same encoding as C40 static unichar TEXT_SHIFT2_SET_CHARS[40]; static const unichar TEXT_SHIFT3_SET_CHARS[32] = { '`', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '{', '|', '}', '~', (unichar) 127 }; enum { PAD_ENCODE = 0, // Not really a mode ASCII_ENCODE, C40_ENCODE, TEXT_ENCODE, ANSIX12_ENCODE, EDIFACT_ENCODE, BASE256_ENCODE }; @implementation ZXDataMatrixDecodedBitStreamParser + (void)initialize { if ([self class] != [ZXDataMatrixDecodedBitStreamParser class]) return; memcpy(TEXT_SHIFT2_SET_CHARS, C40_SHIFT2_SET_CHARS, sizeof(C40_SHIFT2_SET_CHARS)); } + (ZXDecoderResult *)decode:(ZXByteArray *)bytes error:(NSError **)error { ZXBitSource *bits = [[ZXBitSource alloc] initWithBytes:bytes]; NSMutableString *result = [NSMutableString stringWithCapacity:100]; NSMutableString *resultTrailer = [NSMutableString string]; NSMutableArray *byteSegments = [NSMutableArray arrayWithCapacity:1]; int mode = ASCII_ENCODE; do { if (mode == ASCII_ENCODE) { mode = [self decodeAsciiSegment:bits result:result resultTrailer:resultTrailer]; if (mode == -1) { if (error) *error = ZXFormatErrorInstance(); return nil; } } else { switch (mode) { case C40_ENCODE: if (![self decodeC40Segment:bits result:result]) { if (error) *error = ZXFormatErrorInstance(); return nil; } break; case TEXT_ENCODE: if (![self decodeTextSegment:bits result:result]) { if (error) *error = ZXFormatErrorInstance(); return nil; } break; case ANSIX12_ENCODE: if (![self decodeAnsiX12Segment:bits result:result]) { if (error) *error = ZXFormatErrorInstance(); return nil; } break; case EDIFACT_ENCODE: [self decodeEdifactSegment:bits result:result]; break; case BASE256_ENCODE: if (![self decodeBase256Segment:bits result:result byteSegments:byteSegments]) { if (error) *error = ZXFormatErrorInstance(); return nil; } break; default: if (error) *error = ZXFormatErrorInstance(); return nil; } mode = ASCII_ENCODE; } } while (mode != PAD_ENCODE && bits.available > 0); if ([resultTrailer length] > 0) { [result appendString:resultTrailer]; } return [[ZXDecoderResult alloc] initWithRawBytes:bytes text:result byteSegments:[byteSegments count] == 0 ? nil : byteSegments ecLevel:nil]; } /** * See ISO 16022:2006, 5.2.3 and Annex C, Table C.2 */ + (int)decodeAsciiSegment:(ZXBitSource *)bits result:(NSMutableString *)result resultTrailer:(NSMutableString *)resultTrailer { BOOL upperShift = NO; do { int oneByte = [bits readBits:8]; if (oneByte == 0) { return -1; } else if (oneByte <= 128) { // ASCII data (ASCII value + 1) if (upperShift) { oneByte += 128; //upperShift = NO; } [result appendFormat:@"%C", (unichar)(oneByte - 1)]; return ASCII_ENCODE; } else if (oneByte == 129) { // Pad return PAD_ENCODE; } else if (oneByte <= 229) { // 2-digit data 00-99 (Numeric Value + 130) int value = oneByte - 130; if (value < 10) { // pad with '0' for single digit values [result appendString:@"0"]; } [result appendFormat:@"%d", value]; } else if (oneByte == 230) { // Latch to C40 encodation return C40_ENCODE; } else if (oneByte == 231) { // Latch to Base 256 encodation return BASE256_ENCODE; } else if (oneByte == 232) { // FNC1 [result appendFormat:@"%C", (unichar)29]; // translate as ASCII 29 } else if (oneByte == 233 || oneByte == 234) { // Structured Append, Reader Programming // Ignore these symbols for now //return -1; } else if (oneByte == 235) { // Upper Shift (shift to Extended ASCII) upperShift = YES; } else if (oneByte == 236) { // 05 Macro [result appendFormat:@"[)>%C%C", (unichar)0x001E05, (unichar)0x001D]; [resultTrailer insertString:[NSString stringWithFormat:@"%C%C", (unichar)0x001E, (unichar)0x0004] atIndex:0]; } else if (oneByte == 237) { // 06 Macro [result appendFormat:@"[)>%C%C", (unichar)0x001E06, (unichar)0x001D]; [resultTrailer insertString:[NSString stringWithFormat:@"%C%C", (unichar)0x001E, (unichar)0x0004] atIndex:0]; } else if (oneByte == 238) { // Latch to ANSI X12 encodation return ANSIX12_ENCODE; } else if (oneByte == 239) { // Latch to Text encodation return TEXT_ENCODE; } else if (oneByte == 240) { // Latch to EDIFACT encodation return EDIFACT_ENCODE; } else if (oneByte == 241) { // ECI Character // TODO(bbrown): I think we need to support ECI // Ignore this symbol for now } else if (oneByte >= 242) { // Not to be used in ASCII encodation // ... but work around encoders that end with 254, latch back to ASCII if (oneByte != 254 || bits.available != 0) { return -1; } } } while (bits.available > 0); return ASCII_ENCODE; } /** * See ISO 16022:2006, 5.2.5 and Annex C, Table C.1 */ + (BOOL)decodeC40Segment:(ZXBitSource *)bits result:(NSMutableString *)result { // Three C40 values are encoded in a 16-bit value as // (1600 * C1) + (40 * C2) + C3 + 1 // TODO(bbrown): The Upper Shift with C40 doesn't work in the 4 value scenario all the time BOOL upperShift = NO; int cValues[3] = {0}; int shift = 0; do { // If there is only one byte left then it will be encoded as ASCII if ([bits available] == 8) { return YES; } int firstByte = [bits readBits:8]; if (firstByte == 254) { // Unlatch codeword return YES; } [self parseTwoBytes:firstByte secondByte:[bits readBits:8] result:cValues]; for (int i = 0; i < 3; i++) { int cValue = cValues[i]; switch (shift) { case 0: if (cValue < 3) { shift = cValue + 1; } else if (cValue < sizeof(C40_BASIC_SET_CHARS) / sizeof(char)) { unichar c40char = C40_BASIC_SET_CHARS[cValue]; if (upperShift) { [result appendFormat:@"%C", (unichar)(c40char + 128)]; upperShift = NO; } else { [result appendFormat:@"%C", c40char]; } } else { return NO; } break; case 1: if (upperShift) { [result appendFormat:@"%C", (unichar)(cValue + 128)]; upperShift = NO; } else { [result appendFormat:@"%C", (unichar)cValue]; } shift = 0; break; case 2: if (cValue < sizeof(C40_SHIFT2_SET_CHARS) / sizeof(char)) { unichar c40char = C40_SHIFT2_SET_CHARS[cValue]; if (upperShift) { [result appendFormat:@"%C", (unichar)(c40char + 128)]; upperShift = NO; } else { [result appendFormat:@"%C", c40char]; } } else if (cValue == 27) { // FNC1 [result appendFormat:@"%C", (unichar)29]; // translate as ASCII 29 } else if (cValue == 30) { // Upper Shift upperShift = YES; } else { return NO; } shift = 0; break; case 3: if (upperShift) { [result appendFormat:@"%C", (unichar)(cValue + 224)]; upperShift = NO; } else { [result appendFormat:@"%C", (unichar)(cValue + 96)]; } shift = 0; break; default: return NO; } } } while (bits.available > 0); return YES; } /** * See ISO 16022:2006, 5.2.6 and Annex C, Table C.2 */ + (BOOL)decodeTextSegment:(ZXBitSource *)bits result:(NSMutableString *)result { // Three Text values are encoded in a 16-bit value as // (1600 * C1) + (40 * C2) + C3 + 1 // TODO(bbrown): The Upper Shift with Text doesn't work in the 4 value scenario all the time BOOL upperShift = NO; int cValues[3] = {0}; int shift = 0; do { // If there is only one byte left then it will be encoded as ASCII if (bits.available == 8) { return YES; } int firstByte = [bits readBits:8]; if (firstByte == 254) { // Unlatch codeword return YES; } [self parseTwoBytes:firstByte secondByte:[bits readBits:8] result:cValues]; for (int i = 0; i < 3; i++) { int cValue = cValues[i]; switch (shift) { case 0: if (cValue < 3) { shift = cValue + 1; } else if (cValue < sizeof(TEXT_BASIC_SET_CHARS) / sizeof(char)) { unichar textChar = TEXT_BASIC_SET_CHARS[cValue]; if (upperShift) { [result appendFormat:@"%C", (unichar)(textChar + 128)]; upperShift = NO; } else { [result appendFormat:@"%C", textChar]; } } else { return NO; } break; case 1: if (upperShift) { [result appendFormat:@"%C", (unichar)(cValue + 128)]; upperShift = NO; } else { [result appendFormat:@"%C", (unichar)cValue]; } shift = 0; break; case 2: // Shift 2 for Text is the same encoding as C40 if (cValue < sizeof(TEXT_SHIFT2_SET_CHARS) / sizeof(unichar)) { unichar textChar = TEXT_SHIFT2_SET_CHARS[cValue]; if (upperShift) { [result appendFormat:@"%C", (unichar)(textChar + 128)]; upperShift = NO; } else { [result appendFormat:@"%C", textChar]; } } else if (cValue == 27) { [result appendFormat:@"%C", (unichar)29]; // translate as ASCII 29 } else if (cValue == 30) { // Upper Shift upperShift = YES; } else { return NO; } shift = 0; break; case 3: if (cValue < sizeof(TEXT_SHIFT3_SET_CHARS) / sizeof(char)) { unichar textChar = TEXT_SHIFT3_SET_CHARS[cValue]; if (upperShift) { [result appendFormat:@"%C", (unichar)(textChar + 128)]; upperShift = NO; } else { [result appendFormat:@"%C", textChar]; } shift = 0; } else { return NO; } break; default: return NO; } } } while (bits.available > 0); return YES; } /** * See ISO 16022:2006, 5.2.7 */ + (BOOL)decodeAnsiX12Segment:(ZXBitSource *)bits result:(NSMutableString *)result { // Three ANSI X12 values are encoded in a 16-bit value as // (1600 * C1) + (40 * C2) + C3 + 1 int cValues[3] = {0}; do { // If there is only one byte left then it will be encoded as ASCII if (bits.available == 8) { return YES; } int firstByte = [bits readBits:8]; if (firstByte == 254) { // Unlatch codeword return YES; } [self parseTwoBytes:firstByte secondByte:[bits readBits:8] result:cValues]; for (int i = 0; i < 3; i++) { int cValue = cValues[i]; if (cValue == 0) { // X12 segment terminator [result appendString:@"\r"]; } else if (cValue == 1) { // X12 segment separator * [result appendString:@"*"]; } else if (cValue == 2) { // X12 sub-element separator > [result appendString:@">"]; } else if (cValue == 3) { // space [result appendString:@" "]; } else if (cValue < 14) { // 0 - 9 [result appendFormat:@"%C", (unichar)(cValue + 44)]; } else if (cValue < 40) { // A - Z [result appendFormat:@"%C", (unichar)(cValue + 51)]; } else { return NO; } } } while (bits.available > 0); return YES; } + (void)parseTwoBytes:(int)firstByte secondByte:(int)secondByte result:(int[])result { int fullBitValue = (firstByte << 8) + secondByte - 1; int temp = fullBitValue / 1600; result[0] = temp; fullBitValue -= temp * 1600; temp = fullBitValue / 40; result[1] = temp; result[2] = fullBitValue - temp * 40; } /** * See ISO 16022:2006, 5.2.8 and Annex C Table C.3 */ + (void)decodeEdifactSegment:(ZXBitSource *)bits result:(NSMutableString *)result { do { // If there is only two or less bytes left then it will be encoded as ASCII if (bits.available <= 16) { return; } for (int i = 0; i < 4; i++) { int edifactValue = [bits readBits:6]; // Check for the unlatch character if (edifactValue == 0x1F) { // 011111 // Read rest of byte, which should be 0, and stop int bitsLeft = 8 - bits.bitOffset; if (bitsLeft != 8) { [bits readBits:bitsLeft]; } return; } if ((edifactValue & 0x20) == 0) { // no 1 in the leading (6th) bit edifactValue |= 0x40; // Add a leading 01 to the 6 bit binary value } [result appendFormat:@"%c", (char)edifactValue]; } } while (bits.available > 0); } /** * See ISO 16022:2006, 5.2.9 and Annex B, B.2 */ + (BOOL)decodeBase256Segment:(ZXBitSource *)bits result:(NSMutableString *)result byteSegments:(NSMutableArray *)byteSegments { int codewordPosition = 1 + bits.byteOffset; // position is 1-indexed int d1 = [self unrandomize255State:[bits readBits:8] base256CodewordPosition:codewordPosition++]; int count; if (d1 == 0) { count = [bits available] / 8; } else if (d1 < 250) { count = d1; } else { count = 250 * (d1 - 249) + [self unrandomize255State:[bits readBits:8] base256CodewordPosition:codewordPosition++]; } if (count < 0) { return NO; } ZXByteArray *bytes = [[ZXByteArray alloc] initWithLength:count]; for (int i = 0; i < count; i++) { if ([bits available] < 8) { return NO; } bytes.array[i] = (int8_t)[self unrandomize255State:[bits readBits:8] base256CodewordPosition:codewordPosition++]; } [byteSegments addObject:bytes]; [result appendString:[[NSString alloc] initWithBytes:bytes.array length:bytes.length encoding:NSISOLatin1StringEncoding]]; return YES; } /** * See ISO 16022:2006, Annex B, B.2 */ + (int)unrandomize255State:(int)randomizedBase256Codeword base256CodewordPosition:(int)base256CodewordPosition { int pseudoRandomNumber = ((149 * base256CodewordPosition) % 255) + 1; int tempVariable = randomizedBase256Codeword - pseudoRandomNumber; return tempVariable >= 0 ? tempVariable : tempVariable + 256; } @end