/* * Copyright 2012 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #import "ZXGlobalHistogramBinarizer.h" #import "ZXBitArray.h" #import "ZXBitMatrix.h" #import "ZXByteArray.h" #import "ZXErrors.h" #import "ZXIntArray.h" #import "ZXLuminanceSource.h" const int ZX_LUMINANCE_BITS = 5; const int ZX_LUMINANCE_SHIFT = 8 - ZX_LUMINANCE_BITS; const int ZX_LUMINANCE_BUCKETS = 1 << ZX_LUMINANCE_BITS; @interface ZXGlobalHistogramBinarizer () @property (nonatomic, strong) ZXByteArray *luminances; @property (nonatomic, strong) ZXIntArray *buckets; @end @implementation ZXGlobalHistogramBinarizer - (id)initWithSource:(ZXLuminanceSource *)source { if (self = [super initWithSource:source]) { _luminances = [[ZXByteArray alloc] initWithLength:0]; _buckets = [[ZXIntArray alloc] initWithLength:ZX_LUMINANCE_BUCKETS]; } return self; } - (ZXBitArray *)blackRow:(int)y row:(ZXBitArray *)row error:(NSError **)error { ZXLuminanceSource *source = self.luminanceSource; int width = source.width; if (row == nil || row.size < width) { row = [[ZXBitArray alloc] initWithSize:width]; } else { [row clear]; } [self initArrays:width]; ZXByteArray *localLuminances = [source rowAtY:y row:self.luminances]; ZXIntArray *localBuckets = self.buckets; for (int x = 0; x < width; x++) { int pixel = localLuminances.array[x] & 0xff; localBuckets.array[pixel >> ZX_LUMINANCE_SHIFT]++; } int blackPoint = [self estimateBlackPoint:localBuckets]; if (blackPoint == -1) { if (error) *error = ZXNotFoundErrorInstance(); return nil; } int left = localLuminances.array[0] & 0xff; int center = localLuminances.array[1] & 0xff; for (int x = 1; x < width - 1; x++) { int right = localLuminances.array[x + 1] & 0xff; // A simple -1 4 -1 box filter with a weight of 2. int luminance = ((center * 4) - left - right) >> 1; if (luminance < blackPoint) { [row set:x]; } left = center; center = right; } return row; } - (ZXBitMatrix *)blackMatrixWithError:(NSError **)error { ZXLuminanceSource *source = self.luminanceSource; int width = source.width; int height = source.height; ZXBitMatrix *matrix = [[ZXBitMatrix alloc] initWithWidth:width height:height]; // Quickly calculates the histogram by sampling four rows from the image. This proved to be // more robust on the blackbox tests than sampling a diagonal as we used to do. [self initArrays:width]; // We delay reading the entire image luminance until the black point estimation succeeds. // Although we end up reading four rows twice, it is consistent with our motto of // "fail quickly" which is necessary for continuous scanning. ZXIntArray *localBuckets = self.buckets; for (int y = 1; y < 5; y++) { int row = height * y / 5; ZXByteArray *localLuminances = [source rowAtY:row row:self.luminances]; int right = (width * 4) / 5; for (int x = width / 5; x < right; x++) { int pixel = localLuminances.array[x] & 0xff; localBuckets.array[pixel >> ZX_LUMINANCE_SHIFT]++; } } int blackPoint = [self estimateBlackPoint:localBuckets]; if (blackPoint == -1) { if (error) *error = ZXNotFoundErrorInstance(); return nil; } ZXByteArray *localLuminances = source.matrix; for (int y = 0; y < height; y++) { int offset = y * width; for (int x = 0; x < width; x++) { int pixel = localLuminances.array[offset + x] & 0xff; if (pixel < blackPoint) { [matrix setX:x y:y]; } } } return matrix; } - (ZXBinarizer *)createBinarizer:(ZXLuminanceSource *)source { return [[ZXGlobalHistogramBinarizer alloc] initWithSource:source]; } - (void)initArrays:(int)luminanceSize { if (self.luminances.length < luminanceSize) { self.luminances = [[ZXByteArray alloc] initWithLength:luminanceSize]; } for (int x = 0; x < ZX_LUMINANCE_BUCKETS; x++) { self.buckets.array[x] = 0; } } - (int)estimateBlackPoint:(ZXIntArray *)buckets { // Find the tallest peak in the histogram. int numBuckets = buckets.length; int maxBucketCount = 0; int firstPeak = 0; int firstPeakSize = 0; for (int x = 0; x < numBuckets; x++) { if (buckets.array[x] > firstPeakSize) { firstPeak = x; firstPeakSize = buckets.array[x]; } if (buckets.array[x] > maxBucketCount) { maxBucketCount = buckets.array[x]; } } // Find the second-tallest peak which is somewhat far from the tallest peak. int secondPeak = 0; int secondPeakScore = 0; for (int x = 0; x < numBuckets; x++) { int distanceToBiggest = x - firstPeak; // Encourage more distant second peaks by multiplying by square of distance. int score = buckets.array[x] * distanceToBiggest * distanceToBiggest; if (score > secondPeakScore) { secondPeak = x; secondPeakScore = score; } } // Make sure firstPeak corresponds to the black peak. if (firstPeak > secondPeak) { int temp = firstPeak; firstPeak = secondPeak; secondPeak = temp; } // If there is too little contrast in the image to pick a meaningful black point, throw rather // than waste time trying to decode the image, and risk false positives. if (secondPeak - firstPeak <= numBuckets / 16) { return -1; } // Find a valley between them that is low and closer to the white peak. int bestValley = secondPeak - 1; int bestValleyScore = -1; for (int x = secondPeak - 1; x > firstPeak; x--) { int fromFirst = x - firstPeak; int score = fromFirst * fromFirst * (secondPeak - x) * (maxBucketCount - buckets.array[x]); if (score > bestValleyScore) { bestValley = x; bestValleyScore = score; } } return bestValley << ZX_LUMINANCE_SHIFT; } @end