123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- /*
- * Copyright 2012 ZXing authors
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #import "ZXByteArray.h"
- #import "ZXHybridBinarizer.h"
- #import "ZXIntArray.h"
-
- // This class uses 5x5 blocks to compute local luminance, where each block is 8x8 pixels.
- // So this is the smallest dimension in each axis we can accept.
- const int ZX_BLOCK_SIZE_POWER = 3;
- const int ZX_BLOCK_SIZE = 1 << ZX_BLOCK_SIZE_POWER; // ...0100...00
- const int ZX_BLOCK_SIZE_MASK = ZX_BLOCK_SIZE - 1; // ...0011...11
- const int ZX_MINIMUM_DIMENSION = ZX_BLOCK_SIZE * 5;
- const int ZX_MIN_DYNAMIC_RANGE = 24;
-
- @interface ZXHybridBinarizer ()
-
- @property (nonatomic, strong) ZXBitMatrix *matrix;
-
- @end
-
- @implementation ZXHybridBinarizer
-
- /**
- * Calculates the final BitMatrix once for all requests. This could be called once from the
- * constructor instead, but there are some advantages to doing it lazily, such as making
- * profiling easier, and not doing heavy lifting when callers don't expect it.
- */
- - (ZXBitMatrix *)blackMatrixWithError:(NSError **)error {
- if (self.matrix != nil) {
- return self.matrix;
- }
- ZXLuminanceSource *source = [self luminanceSource];
- int width = source.width;
- int height = source.height;
- if (width >= ZX_MINIMUM_DIMENSION && height >= ZX_MINIMUM_DIMENSION) {
- ZXByteArray *luminances = source.matrix;
- int subWidth = width >> ZX_BLOCK_SIZE_POWER;
- if ((width & ZX_BLOCK_SIZE_MASK) != 0) {
- subWidth++;
- }
- int subHeight = height >> ZX_BLOCK_SIZE_POWER;
- if ((height & ZX_BLOCK_SIZE_MASK) != 0) {
- subHeight++;
- }
- int **blackPoints = [self calculateBlackPoints:luminances.array subWidth:subWidth subHeight:subHeight width:width height:height];
-
- ZXBitMatrix *newMatrix = [[ZXBitMatrix alloc] initWithWidth:width height:height];
- [self calculateThresholdForBlock:luminances.array subWidth:subWidth subHeight:subHeight width:width height:height blackPoints:blackPoints matrix:newMatrix];
- self.matrix = newMatrix;
-
- for (int i = 0; i < subHeight; i++) {
- free(blackPoints[i]);
- }
- free(blackPoints);
- } else {
- // If the image is too small, fall back to the global histogram approach.
- self.matrix = [super blackMatrixWithError:error];
- }
- return self.matrix;
- }
-
- - (ZXBinarizer *)createBinarizer:(ZXLuminanceSource *)source {
- return [[ZXHybridBinarizer alloc] initWithSource:source];
- }
-
- /**
- * For each block in the image, calculate the average black point using a 5x5 grid
- * of the blocks around it. Also handles the corner cases (fractional blocks are computed based
- * on the last pixels in the row/column which are also used in the previous block).
- */
- - (void)calculateThresholdForBlock:(int8_t *)luminances
- subWidth:(int)subWidth
- subHeight:(int)subHeight
- width:(int)width
- height:(int)height
- blackPoints:(int **)blackPoints
- matrix:(ZXBitMatrix *)matrix {
- for (int y = 0; y < subHeight; y++) {
- int yoffset = y << ZX_BLOCK_SIZE_POWER;
- int maxYOffset = height - ZX_BLOCK_SIZE;
- if (yoffset > maxYOffset) {
- yoffset = maxYOffset;
- }
- for (int x = 0; x < subWidth; x++) {
- int xoffset = x << ZX_BLOCK_SIZE_POWER;
- int maxXOffset = width - ZX_BLOCK_SIZE;
- if (xoffset > maxXOffset) {
- xoffset = maxXOffset;
- }
- int left = [self cap:x min:2 max:subWidth - 3];
- int top = [self cap:y min:2 max:subHeight - 3];
- int sum = 0;
- for (int z = -2; z <= 2; z++) {
- int *blackRow = blackPoints[top + z];
- sum += blackRow[left - 2] + blackRow[left - 1] + blackRow[left] + blackRow[left + 1] + blackRow[left + 2];
- }
- int average = sum / 25;
- [self thresholdBlock:luminances xoffset:xoffset yoffset:yoffset threshold:average stride:width matrix:matrix];
- }
- }
- }
-
- - (int)cap:(int)value min:(int)min max:(int)max {
- return value < min ? min : value > max ? max : value;
- }
-
- /**
- * Applies a single threshold to a block of pixels.
- */
- - (void)thresholdBlock:(int8_t *)luminances
- xoffset:(int)xoffset
- yoffset:(int)yoffset
- threshold:(int)threshold
- stride:(int)stride
- matrix:(ZXBitMatrix *)matrix {
- for (int y = 0, offset = yoffset * stride + xoffset; y < ZX_BLOCK_SIZE; y++, offset += stride) {
- for (int x = 0; x < ZX_BLOCK_SIZE; x++) {
- // Comparison needs to be <= so that black == 0 pixels are black even if the threshold is 0
- if ((luminances[offset + x] & 0xFF) <= threshold) {
- [matrix setX:xoffset + x y:yoffset + y];
- }
- }
- }
- }
-
- /**
- * Calculates a single black point for each block of pixels and saves it away.
- * See the following thread for a discussion of this algorithm:
- * http://groups.google.com/group/zxing/browse_thread/thread/d06efa2c35a7ddc0
- */
- - (int **)calculateBlackPoints:(int8_t *)luminances
- subWidth:(int)subWidth
- subHeight:(int)subHeight
- width:(int)width
- height:(int)height {
- int **blackPoints = (int **)malloc(subHeight * sizeof(int *));
- for (int y = 0; y < subHeight; y++) {
- blackPoints[y] = (int *)malloc(subWidth * sizeof(int));
-
- int yoffset = y << ZX_BLOCK_SIZE_POWER;
- int maxYOffset = height - ZX_BLOCK_SIZE;
- if (yoffset > maxYOffset) {
- yoffset = maxYOffset;
- }
- for (int x = 0; x < subWidth; x++) {
- int xoffset = x << ZX_BLOCK_SIZE_POWER;
- int maxXOffset = width - ZX_BLOCK_SIZE;
- if (xoffset > maxXOffset) {
- xoffset = maxXOffset;
- }
- int sum = 0;
- int min = 0xFF;
- int max = 0;
- for (int yy = 0, offset = yoffset * width + xoffset; yy < ZX_BLOCK_SIZE; yy++, offset += width) {
- for (int xx = 0; xx < ZX_BLOCK_SIZE; xx++) {
- int pixel = luminances[offset + xx] & 0xFF;
- sum += pixel;
- // still looking for good contrast
- if (pixel < min) {
- min = pixel;
- }
- if (pixel > max) {
- max = pixel;
- }
- }
- // short-circuit min/max tests once dynamic range is met
- if (max - min > ZX_MIN_DYNAMIC_RANGE) {
- // finish the rest of the rows quickly
- for (yy++, offset += width; yy < ZX_BLOCK_SIZE; yy++, offset += width) {
- for (int xx = 0; xx < ZX_BLOCK_SIZE; xx++) {
- sum += luminances[offset + xx] & 0xFF;
- }
- }
- }
- }
-
- // The default estimate is the average of the values in the block.
- int average = sum >> (ZX_BLOCK_SIZE_POWER * 2);
- if (max - min <= ZX_MIN_DYNAMIC_RANGE) {
- // If variation within the block is low, assume this is a block with only light or only
- // dark pixels. In that case we do not want to use the average, as it would divide this
- // low contrast area into black and white pixels, essentially creating data out of noise.
- //
- // The default assumption is that the block is light/background. Since no estimate for
- // the level of dark pixels exists locally, use half the min for the block.
- average = min / 2;
-
- if (y > 0 && x > 0) {
- // Correct the "white background" assumption for blocks that have neighbors by comparing
- // the pixels in this block to the previously calculated black points. This is based on
- // the fact that dark barcode symbology is always surrounded by some amount of light
- // background for which reasonable black point estimates were made. The bp estimated at
- // the boundaries is used for the interior.
-
- // The (min < bp) is arbitrary but works better than other heuristics that were tried.
- int averageNeighborBlackPoint =
- (blackPoints[y - 1][x] + (2 * blackPoints[y][x - 1]) + blackPoints[y - 1][x - 1]) / 4;
- if (min < averageNeighborBlackPoint) {
- average = averageNeighborBlackPoint;
- }
- }
- }
- blackPoints[y][x] = average;
- }
- }
- return blackPoints;
- }
-
- @end
|